Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion.
نویسندگان
چکیده
Higher plant nitrate reductases (NRs) carry an N-terminal domain whose sequence is not conserved in NRs from other organisms. A gene composed of a full-length tobacco NR cDNA with an internal deletion of 168 bp in the 5' end fused to the cauliflower mosaic virus 35S promoter and appropriate termination signals was constructed and designated as delta NR. An NR-deficient mutant of Nicotiana plumbaginifolia was transformed with this delta NR gene. In transgenic plants expressing this construct, NR activity was restored and normal growth resulted. Apart from a higher thermosensitivity, no appreciable modification of the kinetic parameters of the enzyme was detectable. The post-transcriptional regulation of NR by light was abolished in delta NR transformants. Consequently, deregulated production of glutamine and asparagine was detected in delta NR transformants. The absence of in vitro delta NR activity modulation by ATP suggests the impairment of delta NR phosphorylation and thereby suppression of delta NR post-translational regulation. These data imply that post-transcriptional control of NR expression is important for the flow of the nitrate assimilatory pathway.
منابع مشابه
Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence.
Diurnal variations in nitrate reductase (NR) activity and nitrogen metabolites were examined in wild-type Nicotiana plumbaginifolia and transformants with various degrees of NR deregulation. In the C1 line, NR was only deregulated at the transcriptional level by placing the NR gene under the control of the cauliflower mosaic virus 35S RNA promoter. In the Del8 and S521D lines, NR was additional...
متن کاملA conserved acidic motif in the N-terminal domain of nitrate reductase is necessary for the inactivation of the enzyme in the dark by phosphorylation and 14-3-3 binding.
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611-621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-...
متن کاملSignalling cascades integrating light-enhanced nitrate metabolism.
In higher plants, light is crucial for regulation of nitrate uptake, translocation and assimilation into organic compounds. Part of this metabolism is tightly coupled to photosynthesis because the enzymes involved, nitrite reductase and glutamate synthase, are localized to the chloroplasts and receive reducing power from photosynthetic electron transport. However, important enzymes in nitrate a...
متن کاملDeletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties.
Nitrate reductase (NR) is post-translationally regulated by phosphorylation and binding of 14-3-3 proteins. Deletion of 56 amino acids in the amino-terminal domain of NR was previously shown to impair this type of regulation in tobacco (Nicotiana plumbaginifolia) (L. Nussaume, M. Vincentez, C. Meyer, J.-P. Boutin, M. Caboche [1995] Plant Cell 7: 611-621), although both full-length NR and delete...
متن کاملA glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis.
Nitrate reductase (NR), the first enzyme in the nitrate assimilation pathway, is regulated post-transcriptionally in response to light and CO2. In spinach, it has been shown that phosphorylation is one mechanism that mediates this regulation. In this paper, the phosphorylation of NR in Arabidopsis is described in both wild-type and NR- mutant plants. A 110-kDa protein radiolabeled in vivo with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 7 5 شماره
صفحات -
تاریخ انتشار 1995